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Abstract—Visualization assisted crime analysis tools used by
public security agencies are usually designed to explore large
urban areas, relying on grid-based heatmaps to reveal spatial
crime distribution in whole districts, regions, and neighborhoods.
Therefore, those tools can hardly identify micro-scale patterns
closely related to crime opportunity, whose understanding is
fundamental to the planning of preventive actions. Enabling
a combined analysis of spatial patterns and their evolution
over time is another challenge faced by most crime analysis
tools. In this paper, we present Mirante, a crime mapping
visualization system that allows spatiotemporal analysis of crime
patterns in a street-level scale. In contrast to conventional tools,
Mirante builds upon street-level heatmaps and other visualization
resources that enable spatial and temporal pattern analysis,
uncovering fine-scale crime hotspots, seasonality, and dynamics
over time. Mirante has been developed in close collaboration with
domain experts, following rigid requirements as scalability and
versatile to be implemented in large and medium-sized cities. We
demonstrate the usefulness of Mirante throughout case studies
run by domain experts using real data sets from cities with
different characteristics. With the help of Mirante, the experts
were capable of diagnosing how crime evolves in specific regions
of the cities while still being able to raise hypotheses about why
certain types of crime show up.

I. INTRODUCTION

Understanding crime patterns in urban areas is a challenging
problem due to the interplay between the spatial and temporal
dynamics of crimes, the great variability of patterns among the
different types of crimes, and the large amount of data involved
in such analysis. In this context, the branch of Geographic
Information Systems (GIS) called Crime Mapping focuses on
developing tools to explore and analyze the spatio-temporal
behavior of crimes, leveraging the importance of local ur-
ban, social, and environmental characteristics as determinants
for crime opportunity [1], [2]. Current crime mapping tools
combine techniques from different fields such as mathematics
and statistics [3]–[5], machine learning [6], [7], optimization
and visualization [8]–[10], and social sciences [11], [12].
Examples of crime mapping systems implemented to increase
transparency for the population and to support agencies in
charge of public security are LexisNexis1, NYC Crime Map2,
CitizenRIMS3, and CrimeMapping4.

An important aspect of crime mapping is the spatial dis-
cretization. Most techniques rely on regular grids with crime

1 communitycrimemap.com 2 maps.nyc.gov/crime/ 3 crimegraphics.com
4 crimemapping.com

data aggregated on grid cells, each covering hundreds of
square meters. However, recent studies point out the impor-
tance of analyzing micro places [13]–[16], as crime rarely
concentrates on regions larger than a street segment or corner.
In fact, several researchers have shown that crimes mostly oc-
cur near specific locations such as bars, fast-food restaurants,
check-cashing centers, and pawnshops, since those places
attract distracted and vulnerable people who carry money
and valuables [14], [17]. In other words, the environment of
those places creates a crime opportunity. Therefore, relying
on spatial discretizations such as the regular grids renders
fine-grained crime analysis a quite challenging task, since the
definition of a proper grid resolution and the identification
of urban factors impacting the crime opportunity is not so
straightforward when crimes are aggregated in a cell contain-
ing several street blocks. Even when a small grid resolution
is used, the alignment of the grid cell, streets’ segments,
and other urban structures are not easy to do, hampering the
detailed analysis of crime patterns and their possible causes.
In addition, the grid representation also limits the analysis of
the temporal behavior of crimes. For instance, suppose that a
type of crime occurs consistently in a street corner during a
period and, after a while, moves to a nearby corner. In a grid
representation, such a temporal behavior can hardly be caught
if both corners lie on the same grid cell.

In collaboration with domain experts, we designed Mirante,
a scalable and versatile visualization tool tailored to explore
crime data in a street-level of detail. Considering street corners
as nodes and street segments as edges, Mirante assumes city
street maps as the spatial discretization. Crime data is spatially
aggregated on street corners using an edge-node strategy
rather than Euclidean distance, which avoids several issues
present in grid cell aggregation. Mirante provides a number
of interactive resources to explore the spatial distribution of
crimes and their dynamics over time, making it possible to
identify temporal patterns such as the shift of crime hotspots
among nearby locations. Interactive filters allow users to focus
their analysis on particular hours of the day, days of the
week, and months of the year, making it possible to easily
scrutinize the seasonality of crimes. Using different selection
mechanisms, users can interactively select regions of interest
in various scales, enabling the spatio-temporal analysis of large
regions as well as quite specific locations of the city, a trait not
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available in most crime analysis tools. Simplicity and ease of
use are other characteristics that render Mirante an interesting
alternative in crime mapping.

In summary, the main contributions of this work are:
• A crime mapping methodology that relies on street

maps as spatial representation, which allows the spatio-
temporal analysis of large regions as well as specific
locations of a city;

• Mirante, a simple web-based visualization tool that pro-
vides a number of interactive resources to explore and
identify spatio-temporal crime patterns;

• Two case studies based on real data that demonstrate
the usefulness of our methodology to reveal interest-
ing crime-related phenomena in large and medium-sized
cities in Brazil.

II. RELATED WORK

In order to better contextualize our proposal, we focus the
discussion on visualization methods to assist the identification
and extraction of crime patterns from spatio-temporal data.
Specifically, we organize this section in two main parts.
Crime Visualization Techniques. Different visual resources
have been employed for exploring crime data, most of
them combining augmented geographical maps and linked
visual components. For instance, early approaches such as
COPLINK [18] uses faded points on a GIS view combined
with self-organized maps for clustering crimes. Buer et al. [19]
employ a hillshade representation on each census block to
express the density of crimes related to adjacent areas. Hotspot
visualization has also been one of the major visual resources
employed to analyze crimes, being Kernel Density Estima-
tion (KDE), the main tool in this context. Good examples
are VALET [20] toolkit, Hotsketch [21] that uses bisquare
function as a kernel, MSKDE [22] that combines KDE and
a marching squares strategy, and NKDE [23] that relies on a
network-constrained kernel function. An alternative hotspot-
based method is CrimAnalyzer [8], which makes use of Non-
Negative Matrix Factorization (NMF) to compute hotspots,
which, as a consequence of the NMF decomposition, splits
hotspots according to their intensity and seasonality.

Although systems described above suit their purpose, they
are not designed to enable a street level of detail analysis.
As discussed in the introduction, the fine-scale analysis is
fundamental for understanding certain phenomena, being this
the main difference between our approach and those methods.
Street-level Visualization Techniques. Fine-grained analysis,
as street-level ones are fundamental in crime mapping, as
crimes usually occur in street segments [24], [25], they tend
to recur in the same or nearby locations [15], and some
specific urban sites such as bars and bus stations are where
hotspots show up [26], [27]. Several visualization methods
have been developed to enable a street-level analysis of
different phenomena, most of which rely on mathematical
and computational tools such as complex networks [28], [29],
neural networks [30], [31], and clustering [32] to enable mean-
ingful visualizations. For instance, StreetExplorer [33] uses

line segment enhancing to search for patterns in urban street
networks. VitalVizor [34] combines geometric entities such as
streets, blocks, and buildings with parallel coordinates and tree
diagrams to understand urban vitality. Wang et al. [35] rely on
animation to explore sparse traffic trajectory data to visualize
the movement of vehicles and extract flow patterns locally.
Trajgraph [36] integrates a node-link graph view with a street-
level map view for understanding urban mobility patterns.
Graph measurements, such as betweenness, and closeness, are
implemented to assist the analysis. SHOC [37], a visualization
tool that presents different crime metaphors: point, choropleth,
and kernel density maps (KDE and MSKDE).

Our approach builds upon simple but powerful visualization
resources to enable a street-level detailed analysis. The imple-
mented visual resources make the visual identification of crime
hotspots quite precise and straightforward while providing
interactive filtering mechanisms to explore temporal patterns,
a trait not present in most of the methods described above. The
simplicity and easy to use is another trait of our approach.

III. REQUIREMENTS AND ANALYTICAL TASKS

The development of Mirante has been a joint work with
a team of sociologists with vast experience in public secu-
rity and crime analysis. The sociologists are a well-known
researchers in the study of violence in South America with
large experience in public safety and social sciences applied to
urban environments. Product of a number of meetings during a
couple of years, we raised requirements that guided analytical
tasks that are addressed by Mirante. Before presenting the
requirements and tasks, we state some nomenclature used in
the rest of the manuscript.

A. Nomenclature

Region refers to a geographical area such as a set of neigh-
borhoods, streets, and parks. In our context, each region
corresponds to a street network defined by the user.
Crime time series is a sequence of records of crimes in a
particular place and aggregated by periods (i.e. by the hour).
Crime type refers to the nature of the criminal activity,
typified according to the victim. In this work, we consider
passerby, commercial establishment, and vehicle robbery.
Hotspots are locations where the number of crime occurrences
is larger than in its surroundings. Since we rely on street map
discretization, hotspots correspond to some street corners with
a large concentration of crimes.
Crime Pattern is the prevalence of crime activities in a period.
For instance, a place where crimes are prevalent for a period
of time and then vanish.

B. Requirements

During regular meetings with the experts, it became clear
their need for mechanisms to set the regions of interest in
different scales (i.e., neighborhoods and street segments). In
particular, visually identifying street segment or street corners
corresponding to hotspots were a major requirement, as their
crime mapping tools did not allow them to scale down the
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analysis to a street-level of detail. Being able to switch the
analysis based on the type of crime was also an important
requirement. Understanding the spatial dynamics of hotspots
and their patterns was important, as the available tools do
not enable interactive filtering mechanisms to analyze the
behavior of crimes over time. In summary, we point the major
requirements as:
R1 - Selecting regions of variable sizes. Selecting regions
of interest with variable sizes while maintaining the ability to
perform analysis in a street-level of detail.
R2 - Identifying high hotspots. Identifying hotspots in a high
level of detail in order to trace a relation between urban factors
and crime.
R3 - Switch crime types. Crime patterns depend on the
type of crime under analysis. Therefore, being able to switch
between different types of crime is an important issue to
compare crime behavior in a location of interest.
R4 - Crime Pattern Analysis. Understanding the dynamics
of crime is a fundamental task in crime mapping. Therefore,
identifying and exploring crime patterns is also fundamental
to determine the urban factors that impact the emergence or
eradication of crimes.

C. Analytical Tasks

The requirements described above gave rise to a list of
analytical tasks that must be accomplished by the visualization
tool.
T1 - Visualize hotspot in a street-level of detail. Enable
visualization resources to reveal hotspots located in street
corners and street segments. This task is related to requests
R2 and R4.
T2 - Interactive selection of regions of interest. Provide
interactive mechanisms to select regions of interest that range
from whole neighborhoods to a few set of street segments,
enabling analysts to focus their analysis on different levels of
details. This task accounts for requests R1, R3, and R4.
T3 - Switch crime types in a given region. Filter the analysis
of different crime types in a given region. This task achieves
the request R3.
T4 - Show crime seasonality. Allow the exploration of crime
seasonality, making it possible to filter crime occurrences
according to periods of the day, day of the week, and month
of the year. This task accounts for requests R3 and R4.
T5 - Identify crime patterns. Explore crimes based on
specific time windows, thus uncovering hotspot patterns. This
task helps achieve the requests R3 and R4.

Mirante integrates the tasks above into a meaningful and
straightforward visualization tool. Details of Mirante’s imple-
mentation is provided in the following section.

IV. MIRANTE

In contrast to most crime mapping techniques, which rely
on regular grids as spatial discretization, Mirante represents
the spatial component as a street-network, where street corners
correspond to the nodes of the graph and street segments to the
edges. Crime data is aggregated in each node of the graph and

(a) Closest node strategy (b) Edge-node strategy

Fig. 1. Two ways to build a crime-based street-network by closest node based
on: (a) Euclidean distance, and (b) edge-node strategy.

depicted as a graph-based heatmap when a region of interest
is selected. The heatmap is updated according to filters that
users can interactively apply to the data. In the following,
we detail the construction of the graph corresponding to the
spatial discretization, the design of the visual components,
their functionalities, and implementation issues.

A. Building the spatial representation

To build the graph corresponding to the spatial discretiza-
tion, we use the OpenStreetMap API [38], which allows for
generating a street-graph containing roads and intersections
for entire cities. It is possible to define the type of map to
use, e.g., pedestrian, bike, and car drive roads. We opt to use
the pedestrian map, as it comprises drive roads and pedestrian
walkways.

The number of nodes and edges derived from the map
varies considerably depending on the city. For instance, the
API returns a set of 533,437 vertices and 1,197,828 edges for
São Paulo city — which we use in some of our experiments.
However, a large number of vertices do not correspond to
street intersections. To remove non-intersection vertices and all
the points along a single street segment, we run a procedure
(see [39] and corresponding implementation included in the
OSMnx library) that topologically simplifies the graph. For
São Paulo street map, the simplification results in 142,112
vertices and 415,178 edges, a considerable reduction that
facilitate interactive procedures.

B. Assigning data to the nodes of the spatial graph represen-
tation

Let Lcrime = {c0, c1, ..., cn} be a list of n crime records,
where each ci contains information such as record id (unique
identifier), location (latitude, longitude), crime type, date,
number of people involved, among other information. Let
G = (V,E) be the graph corresponding to the city’s spa-
tial representation. Each vertex has a unique geo-referenced
coordinate (identifier, latitude, longitude), and each edge (set
of points) represents a segment joining two intersections.

In our context, each crime record ci must be assigned to a
vertex of the graph G. The easiest solution would be to assign
each ci to its nearest vertex using the Euclidean distance.
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TABLE I
METHODOLOGICAL AND VISUALIZATION PROPERTIES AND THEIR

ANALYTICAL TASKS PRESENTED IN SEC.III-C.

T1 T2 T3 T4 T5
Street-level heatmap View 3 3 3
Temporal Evolution View 3 3 3
Temporal Histogram View 3 3 3

Selector Toolbox 3 3
Address Search Bar 3 3

Evolution Animation Controller 3 3 3
Local/global crime ruler 3 3

However, using Euclidean distance is not appropriate because
it does not consider the topology of the spatial representation.
We illustrated this issue in Fig. 1. Notice that using Euclidean
distance the crime records “a” and “b” are properly assigned
vertices, however, records “c” and “d” are not, since it is
clear that the corresponding crimes took place on the street
segments closer to them, so they should be assigned to one of
the vertices defining the segments. Fig. 1b shows the correct
procedure, which we call edge-node distance, where first, the
nearest edge (enear) is found and then the closest vertex.

The crime-vertex assignment starts by traversing the list of
crime records Lcrime to compute their nearest edge enear in
the graph G. Different strategies can be used to efficiently
perform this step, e.g., using a spatial data structure as Quad-
tree or Ball-tree. In our case, we use an R-tree implemented
in the OSMnx library (enear = G.get nearest edge(ci)).
Once the nearest edge enear and end-nodes ((v1, v2) =
G.get vertices(enear)) is found for each record, it is assigned
to the closest edge node. For that, we compute the distance
to both nodes (d{1,2} = greatCircleDistance(ci, v{1,2})) and
crime record in ci are stored into the list crimes associated
to each node, that is, v1.crimes.append(ci) if d1 < d2 or
v2.crimes.append(ci) otherwise. List per-vertex is used to
temporally aggregate crime records (hourly aggregation in our
case), giving rise to a time series associated to each vertex.

To alleviate memory usage, we store the graph and note
time series into a PostGIS-PostgresSQL database, allowing us
to perform querying/retrieving operations quite efficiently.

C. Visualization Components

Mirante brings a set of fully-linked visual components for
supporting the exploratory analysis of crime data in a selected
region. Fig. 2 shows the Mirante system and its seven main
visual components: (a) street-level heatmap to visualize the
crime hotspots in a region; (b) temporal view showing the time
evolution of the crime; (c) seasonal histogram view depicting
the seasonality of crimes by a period, day, and month; (d)
selector toolbox that enables different approaches to select
regions of interest; (e) a search bar to select regions of interest
based on addresses; (f) an evolution animation controller; and
(g) a local/global crime ruler. We design the visual components
to fulfill the requirements raised from the interaction with
domain experts, thus addressing the analytical tasks described
in Sec. III-C. Table I details the relation between visual
resources (first column) and tasks (T1-T5 columns).

Street-Level Heatmap. This view, depicted in Fig. 2a, seeks
to summarize the distribution of crimes across the city by
displaying a set of colored segments on streets using the
number of crimes assigned to each vertex of graph G. For
each vertex, we match a color from a palette depending on
its stored value, as illustrated in Fig. 4a. Given the continuous
nature of our data, we use a sequential scale — starting in dark
red to light yellow — taken from ColorBrewer 2.05. Then, we
use linear interpolation for coloring the lines representing the
edges (see Fig. 4b).
Temporal Evolution View. This view uses an interactive line
chart for displaying how crime events evolve in the selected
region (see Fig. 2b). Moreover, this view can filter the analysis
to focus on a specific range of time, which can be selected by
dragging a range window along the x-axis. Once a new range
of time is selected, all linked views are updated accordingly.
Temporal Histogram View. It comprises four bar charts that
detail the crime distribution in the period of the day, day of the
week, and months of the year (see Fig. 2c). On the top, the red
bars show the volume of crime types in the selected region.
On the bottom, on the left histogram (orange bars) show data
aggregated by the month, while on the right, the bar charts
visualize data by day of the week (in yellow) and the period
of the day (in dark red). Each bar chart serves as a filter, that
is, if a user clicks on one of the bars, all views are updated
to show only crime occurrences in the selected filter.
Selector Toolbox. We implement two different types of
area selection: i) Radial-centric area selection, which sets
a geographical coordinate as the center and allows the user
to interactively define a radius in meters (see Fig. 3a). ii)
Polygonal area selection that allows users to draw a polygon
enclosing a region of interest (see Fig. 3b). The selectors are
in the bottom-right part of the screen (see Fig. 2d).
Address Search Bar. Users can also define a region of interest
based on the address search bar that uses Google GeoSearch
Engine6 to query for the address that most closely matches the
one typed by users (see Fig. 2e). Once retrieved, the system
automatically defines the region of interest as disk centered in
the given address.
Evolution Animation Controller. Mirante allows the analyst
to inspect, through an animation, how data evolves over the
months of the year. The analyst could choose to animate by
month separately or cumulatively (Fig. 2f). Each time-series
reveals different crime behavior in the chosen geographical
location, which are also shown as heatmaps (top images).
Local/Global Crime Ruler. One of the main issues when
performing local analysis is to figure out how criminal activity
observed in the region of interest compares with the amount
of crime recorded in the city. To tackle this issue, we use two
rulers, the global one that shows how the more intense hotspot
of the selected region compares against the more intense
hotspot in the whole city, and the local ruler that shows the
color map used to highlight hotspots in the selected region (see

5 https://colorbrewer2.org/ 6 https://github.com/smeijer/leaflet-geosearch
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Fig. 2. An overview of the Mirante tool, a set of spatiotemporal visual resources enabling the exploration of crime patterns
in a region: (a) Street-level Heatmap, (b) Temporal Evolution View, (c) Temporal Histogram View, (d) Selector toolbox, (e)
Address Search Bar, (f) Evolution Animation Controller, and (g) Local/global crime ruler.

(a)

(b)

Fig. 3. Two different types for
selecting a region of interest: (a)
based on its center and a radius,
and (b) by drawing a polygon.

(a) Color assignation (b) Linear interpolation

Fig. 4. Street-level heatmap construction: (a) Match of color with crime
intensity for each node, and (b) Linear interpolation for coloring all edges
between each two adjacent vertices

Fig. 2g). The rulers allow users to figure out how “dangerous”
it is the region of interest compared with the whole city.

D. Implementation Details

Mirante is a web-based application implemented under the
Django7 framework. The core of the system comprises data
modeling and visualization modules. For the street network,
we used OSMnx8 and NetworkX9 python libraries to process
data. We achieve interactive rates in computation of the nearest
edges, vertex nodes, and street network simplification. All
visualization resources have been developed using JavaScript
libraries: Leaflet10 to perform the interpolation geo-map and
D3.js11 to represent line and bar charts. In our case, we have
developed extra components to manipulate filters by using
Crossfilter12 and Dcjs13 libraries.

7 https://www.djangoproject.com/ 8 https://osmnx.readthedocs.io
9 https://networkx.github.io 10 https://leafletjs.com/ 11 https://d3js.org/
12 https://square.github.io/crossfilter/ 13 https://dc-js.github.io/dc.js/

V. CASE STUDIES

In collaboration with domain experts, we conduct two case
studies to assess Mirante’s performance in terms of effective-
ness for pattern identification and navigability. We analyze
two types of crimes in two different Brazilian cities with very
different characteristics: São Paulo, the largest city in South
America, and São Carlos, a medium-sized city in the state of
São Paulo. Both data sets were geo-coded and provided by the
police department of São Paulo and São Carlos, respectively.

A. Vehicular Robbery in São Paulo City
In this first case study, we assess the usefulness of Mirante

as its effectiveness in identifying vehicle robbery patterns in
a given region of São Paulo. The main task is to understand
the impact of changes in the local urban infrastructure in the
crime opportunity.

São Paulo’s road structure is not properly constructed and
maintained. The analysis aims to support a crime pattern
theory that suggests a higher risk of car robbery/burglary is
linked to the road infrastructure. Roughly speaking, there is a
correlation between the distribution of crimes and the urban
road infrastructure.

To accomplish the case study, we select a region in the
south part of São Paulo. This region is near a favela, i.e.,
a neighborhood of low income, and unregulated settlements.
Using Mirante, we draw a polygon comprising the streets:
Bom Pastor Street, Juntas Provisórias Avenue, and Dois de
Julho Street (see Fig. 2), which accounts for task T2 (see
Section III-C). Known as a region with a large number of
vehicle robbery, we focus the study on this type of crime
(task T3). The selected region contains approximately 650
occurrences of car robbery in the period 2006 to 2017.
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Fig. 5. Vehicle robbery patterns around São Paulo city: (First-column) Crime behavior using Temporal Evolution View selecting two periods of time, one
from to 1/2006 to 11/2010 and another from 11/2010 to 12/2017. (Second and Third columns) Google Street View images of highlighted nodes in different
years and from different angles.

Exploring the Street-Level Heatmap View, we note two
hotspots labeled as “A” and “B” in the Fig. 2 and first column
in the Fig. 5 (task T1). Using the Temporal Evolution View, we
filter crimes from 2006 to November 2010. In this period, a
single prominent hotspot shows up in the northwestern region
of the region (top image in the first column of Fig. 5). Note in
the temporal view that the number of occurrences decreases at
that location in that period, but, from 2011 on, crimes present
an increase (tasks T4 and T5), and the new prominent hotspot
shows up on the southwest of the region, marked as “B” on
the bottom image in the first column of Fig. 5.

In particular, we conduct an empirical analysis examining
the urban infrastructure in the hotspots’ surroundings employ-
ing Google Street View to retrieve and display photos in the
two-time intervals used in our analysis (see the second column
of Fig. 5). The photos suggest that the risk of burglary might
be related to the parking areas and vertical/horizontal transit
signs.

In the first case (hotspot “A”), there is an evident change
in the horizontal transit sign (see the third column on the
top in Fig. 5). Specifically, notice in the red photos that the
roundabout that was present in 2010 was removed in 2017,
forcing drivers to take specific directions, what could make
it harder for criminals to quickly escape to the main avenues
that border the region of interest, thus triggering a decrease in
the number of car robbery in the hotspot “A”.

Regarding hotspot “B”, notice in the orange photos that in
2010 it was not allowed to park cars on the right side of the
street, and in 2017, the parking was allowed. The direction
where cars were allowed to park goes directly to a main avenue
that connects, a hundred meters ahead, to an urban highway,
thus making it easy to steal a car and quickly escape down
the highway (see on the larger photo on the right in Fig. 5 the
connection with a main avenue).

B. Passerby Robbery in São Carlos

The second case study involves passerby robbery in São
Carlos, a mid-sized city in the interior of the State of São
Paulo. In a series of meetings with authorities in charge of the
public security in the city to demonstrate Mirante’s capability,
the authorities presented public policies implemented in the
city to reduce criminality over the years. Despite the reduction
in the number of crimes, mainly passerby robbery, it was not
clear to the authorities which actions impacted most in crime
reduction. Aiming to give some answers, we used Mirante to
explore crimes over the city, describing one of our findings in
the following.

Specifically, security authorities would like to know whether
improvements in the urban infrastructure impact the crime
rates, mainly passerby robbery (task T3) in one of the main
avenues of the city in the interval from January 2014 to April
2019. Using the selection resource to explore the avenue,
one particular site called our attention. Selecting the region
of interest using a disk of radius 300 meters (task T2) and
choosing three time intervals in the temporal view (tasks T4
and T5), we analyzed the behavior of crimes on three time
intervals considering the period of the day with the most
prevalent crime rate, as depicted in Fig. 6. We also use some
images from the Google Street View to verify which factors
could be contributing to the increase or decrease of crimes in
each time interval. Figs. 6 (a, b, and c) show the Street-Level
Heatmap (task T1), selected time interval in the Temporal
Evolution View, Temporal Histogram View (tasks T4 and T5),
and a photo that was taken in the years where the time intervals
have been chosen, namely 2015, 2017, and 2019, respectively.

Fig. 6a-(Temporal Histogram View) shows that in 2015
crimes were most frequent in the afternoon (blue rectangle).
According to the Google Street View photo, no people are
living under the viaduct. However, domain experts alerted
that during the afternoons, the viaduct became a point where
marginalized people used to get together, which can explain
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Fig. 6. Urban infrastructure impacting in passerby robbery in São Carlos city:
(a), (b), and (c) Street-level Heatmap, Temporal Histogram View showing the
seasonality of crimes, Temporal Evolution View with selected time intervals,
and Google street view images respectively.

the large number of passerby robberies in that period of the
day. Fig. 6b-(Temporal Histogram View) shows that in 2017
crimes were more frequent in the evening and, according to the
Google Street View photo, homeless people were living near
the viaduct, which might explain the large number of crimes
in the evening. Fig. 6c-(Temporal Evolution View) shows a
significant drop in crime rates by the end of 2018 and the first
quarter of 2019. According to the photos, the region around
the viaduct was revitalized in that period (facade, lighting,
etc.), making the region safer. Notice that the decrease in
the number of crimes is clearly shown in the Street-Level
Heatmap. The authorities speculate that the improvements in
the infrastructure might explain the decrease this event.

São Carlos’s security authorities considered Mirante a valu-
able tool for different types of analysis. In particular, it
supported the hypothesis that improvements in infrastructure
can help to reduce crime rates in specific locations. They have
also pointed out the capability of Mirante to highlight hotspots
in a street-level of detail, a functionality they do not have in the
crime mapping systems they use to play with. They explicitly
said that Mirante is a very interesting analytic instrument that
could be quite useful in several scenarios.

VI. EXPERT FEEDBACK

After using Mirante and conducting the case studies, two
experts gave us some feedback. The first paragraph is from

the sociologists that used Mirante to analyze crimes in São
Paulo (called E1). The second paragraph is from São Carlos’s
security authorities (called E2).

E1: “The proposed tool has enabled an alternative solution
to the challenges we face in our daily analysis. First, modeling
the spatial domain in a street-level of detail makes easier
the understanding of the spatio-temporal characteristics, with
good implications for public security and social interrela-
tionships. Second, through visual analysis, Mirante motivates
the study of a variety of crimes. Mirante’s visual resources
make it possible to analyze the dynamics of crimes and their
relation with urban factors. Third, each city has its complexity;
based on our experience, a city usually brings together diverse
places (violent and peaceful). This fact makes global studies
less productive due to the lack of local details. The proposed
tool enables a focused analysis while preserving the relation
between local and global crime rates.”

E2: “This research is benefiting our city; it is a critical
and unprecedented investigation. Our security professionals
already work with crime analysis techniques. However, this
crime mapping tool allows a more in-depth and detailed
analysis of crime patterns in specific regions. With Mirante’s
results, we can define actions to reduce crime rates in specific
areas. For instance, we could adopt primary interventions such
as the improvement of lighting and traffic-flow or police forces
interventions.”

In both cases, we got positive feedback from the users. The
experts explicitly mentioned that their current tools do not
manage to do the same analysis as Mirante.

VII. DISCUSSION AND LIMITATIONS

We constructed the visual resources guided by the requests
and analytical tasks of domain experts described in Sec. III.
However, there are some limitations and research opportunities
identified during the design and implementation processes.
Integration with Google Street View. As evidenced in both
case studies, urban infrastructure has an important impact on
crime rates. Such a finding was possible due to Google Street
View, which was used as a side tool. We are planning to
integrate Google Street View API with Mirante, enabling a
more comprehensive exploratory analysis.
Street-Network Topology. As detailed in Sec. IV, it is possi-
ble to make use of different street maps. In this work, we use
pedestrian walkway maps to derive the graph that supports our
spatial discretization. However, a unique network for various
crime types could lead to misinterpretations. As future work,
we will implement a resource to allow users to switch spatial
representations on the fly.
Multiple Data Sources. A limitation of Mirante is that it only
plays with a single source of data, crime data. However, a more
insightful analysis could be performed if other sources were
made available. For instance, providing mechanisms to enable
the joint analysis of crime and flux of people could result in
much richer outcomes. How to integrate multiple data sources
into Mirante is a challenge we are currently facing.
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VIII. CONCLUSION

In this work, we introduced Mirante, a visualization tool
tailored for crime data analysis. Mirante relies on street maps
as spatial discretization, and it enables a set of fully-linked
visual resources to filter crime data based on temporal patterns
and seasonality. Enabling street-level of detail analysis is a
particularly important trait of Mirante that is not available
in most crime mapping systems. The provided case studies
show the effectiveness of Mirante in identifying crime patterns,
making it easier to establish relations between crimes and other
factors, such as urban infrastructure. Mirante has been evalu-
ated by experts in public security, who gave us quite positive
feedbacks, attesting the usefulness of our methodology.
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the city of Bogotá using complex networks,” in International Conference
on Complex Systems. Springer, 2018, pp. 424–438.

[30] N. Ye, B. Wang, M. Kita, M. Xie, and W. Cai, “Urban commerce
distribution analysis based on street view and deep learning,” IEEE
Access, vol. 7, pp. 162 841–162 849, 2019.

[31] S. Law and M. Neira, “An unsupervised approach to geographical
knowledge discovery using street level and street network images,” in
Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
AI for Geographic Knowledge Discovery, 2019, pp. 56–65.

[32] P. Bak, I. Omer, and T. Schreck, Visual Analytics of Urban Environments
using High-Resolution Geographic Data, 07 2010, pp. 25–42.
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